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The transfermatrixmethod (TMM)hasbeen extensivelyused to investigate

quantum-mechanical tunnelling through potential barriers. Reported is the

application of TMM, for the first time, to solve the Schrödinger equation in

double-gateMOSFETs. Themethod is shown to bemore accurate than the

conventional finite difference method, especially for high energy levels.

Introduction: Numerical simulation of nanoscale devices is basically

accomplished by the self-consistent solution of Schrödinger and Poisson

equations [1]. An initial guess for the potential distribution in the device is

firstly assumed. According to this potential, the Schrödinger equation is

solved in the direction normal to the interface (transverse direction)

assuming a plane wave function in the direction parallel to the interface

(longitudinal direction). The eigenenergies and eigenfunctions resulting

from the solution of the Schrödinger equation are used to calculate the

carrier distribution in the device, which is fed to the Poisson equation

yielding new potential distribution. This process is repeated until the

potential difference of two successive iterations is below a certain tolerance.

The transfer matrix method (TMM) is one of the methods used for

the numerical solution of the 1D Schrödinger equation [2]. TMM was

excessively used in solving tunnelling problems [3–6]. It was intro-

duced to solve bounded problems by Kalotas and Lee [7]. In this Letter,

we take a DG-MOSFET as a sample nanoscale MOS structure and

apply the procedure of Kalotas to solve the Schrödinger equation in the

device as a part of finding a self-consistent solution. Eigenenergies and

eigenfunctions resulting from TMM are compared with that resulting

from the standard finite difference method (FDM) [8].

Transfer matrix method: The 1D Schrödinger equation in the z-direction

is written as:
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where c(z) is the eigenfunction, E is the eigenenergy, and V(z) is the

potential energy function. Referring to Fig. 1, which shows the potential

energy profile across the transverse direction of a DG-MOSFET, TMM

is based on breaking up the domain of the solution into N segments,

where in each segment the potential energy is assumed constant. Conse-

quently, for the nth segment, the wave function can be approximated as:

cnðzÞ ¼ An expðanzÞ þ Bn expð�anzÞ
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Applying the conditions of continuity for c(z) and dc(z)=dz between

each two successive segments, we arrive at a series of matrix equations

relating An and Bn of any segment with those of the preceding segment

An-1 and Bn-1 as follows:
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For bound states solution, A of the right boundary segment (AR) and B

for the left boundary segment (BL) must vanish [7]. Thus, on elimina-

ting the intermediate coefficients from (3), we obtain:

AL

0
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¼ M�1ðaL; 0ÞPM ðaR; ZnÞ

0

BR

� �

P ¼ K1K2 � � �KN and Kn ¼ M ðan; zn�1ÞM
�1ðan; znÞ

ð4Þ

Applying boundary conditions and assuming nearly infinite conduction

band offset, offset, ECoffset
, between Si and SiO2, it is found that the

matrix element P12 must vanish, i.e.

P12 ¼ 0 ð5Þ

This condition represents an implicit equation that determines all the

eigenenergies. In addition, for each eigenenergy, the corresponding

eigenfunction is determined by calculating the coefficients An and Bn

for each segment from (3).

Fig. 1 Conduction band edge across transverse direction (normal to
interface) of DG-nMOSFET

Domain divided into N segments, each with width D z

Results: ADG-MOSFETof Si-film thickness Tsi¼ 5 nm, oxide thickness

Tox¼ 1.5 nm, and with Al gate is used as a sample nanoscale

MOS structure. Results are drawn for an acceptor doping in the

channel NA¼ 1� 1017 cm�3, and at gate voltage VG¼ 1.5 V. For h100i

Si, there are two groups of subbands (known as two ladders)

corresponding to the six ellipsoidal constant energy surfaces. One

of the ladders has an effective mass ml¼ 0.92mo (with energies

designated as E11, E12, E13, . . .), and the other has an effective mass

mt¼ 0.19mo (with energies designated as E21, E22, E23, . . .).
For the purpose of assessment of the results of FDM and TMM,

reference values for the eigenvalues and eigenfunctions are found first

using the shooting method [9]. In this method, we seek an energy E

such that, when (1) is integrated from 0 to Tsi, two function nodes

(c¼ 0) are produced at both interfaces z¼ 0 and z¼ Tsi. The integra-

tion was carried out using an efficient Runge-Kutta engine and the

solution obtained this way is considered ‘exact’ for the purpose of

comparing the TMM and FDM methods.
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Fig. 2 Lowest four eigenenergies of first ladder of h100i Si calculated in
Si-film of DG-nMOSFET with Tsi¼ 5 nm, Tox¼ 1.5 nm, NA¼ 1� 1017 cm�3,
VG¼ 1.5 V, using both FDM and TMM at different number of segments N

Dashed horizontal lines indicate ‘exact’ eigenenergies

Fig. 2 shows the first four eigenvalues of the first ladder calculated

using both FDM and TMM at different values of the number of

segments N along with the exact values calculated by the shooting

method. At the same number of segments N, it is evident from Fig. 2

that the results of TMM are generally more accurate than those of FDM,

and the difference in accuracy increases for higher levels. More

specifically, the error in calculating E12, E14 is drawn against N for

the two methods (see Fig. 3), where it is noted that for small N the error

in calculating E14 by TMM is less than that of FDM by � 0.03 eV.

Turning to the assessment of eigenfunctions, the eigenfunctions of the

first and fourth levels of the first ladder (c11 and c14) calculated by the

two methods at N¼ 10 are compared to exact ones as shown in Figs. 4

and 5. It is observed that, even for this very rough mesh size, TMM

continues to do well when it comes to calculating eigenfunctions. While

results of TMM match well with the exact solution, those of FDM look
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unrealistic, especially for c14 (see Fig. 5). Generally, the superiority of

TMM is more evident for higher levels than for lower levels. This is

explained by the rapid change of the eigenfunctions of higher levels for

which the assumption of linear variation of c within each segment

supposed by FDM is fairly poor, while exponential (or sinusoidal)

variation assumed by TMM is more suitable.
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Fig. 3 Comparison of errors in calculating eigenenergies E12, E14 by both
FDM and TMM in same device of Fig. 2
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Fig. 4 Eigenfunction of ground level of first ladder c11 calculated using
both FDM and TMM

Domain of solution in either case divided into 10 segments (N¼ 10)
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Fig. 5 Eigenfunction of fourth level of first ladder c14 calculated using
both FDM and TMM

Domain of solution in either case divided into 10 segments (N¼ 10)

Conclusions: The transfer matrix method (TMM) is successfully used

to solve the 1D Schrödinger equation in a DG-MOSFET. The method

is based on dividing the Si-film region into small segments

and assuming constant potential energy in each segment, then an

implicit equation is numerically solved to find energy eigenvalues,

and thus, for each eigenenergy, the eigenfunction is found in terms of

a series of coefficients each corresponding to one of the segments.

The TMM is proven to be more accurate than the conventional finite

difference method (FDM), especially for high-order levels. The

method can be extended to simulate other similar MOS structures

such as bulk-MOSFET, PD-SOI and FD-SOI.
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